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Pham Duc Chinh
National Center for Natural Science and Technology, Vien Co hoc, 224 Doi Can, Hanoi, Vietham
(Received 8 January 1997

We study the class of planar isotropic randomly inhomogeneous media with certain statistical symmetry
among the component geometries. Exact upper and lower estimates of the conductivity and elastic properties
for the whole class of multicomponent media are given explicitly in the properties and volume fractions of the
constituents and are compared with some idealistic but exact cell models. The comparisons reveal that the
estimates are attained, or nearly reached, by envelopes of exact properties of the models, hence the estimates
should give reasonable approximations for the overall properties of the quasisymmetric mixtures, as well as the
expected scatter intervals associated with the uncertainty in the geometry of the media. Special attention is
given to very simple estimates for the properties of multicomponent circular cell media, which are expected to
represent practical particulate composi{&x1063-651X97)00807-6

PACS numbsdrs): 82.70-y

[. INTRODUCTION tive properties of a composite, but also the possible scatter
intervals associated with the uncertainty in the composite
Many heterogeneous materials appear statistically homageometry. The difficult point, however, is to extract usable
geneous and isotropic and have ovetaffective) properties  information about restrictions on the geometry of a given
depending upon the properties and volume fractions of th€omposite and then derive the best possible estimates of the
constituents and their geometry. The microscopic sizes of theffective properties—the ones that can be attained by specific
constituents are often large in comparison with the atom digeometries permitted by the given uncertainty in the com-
mensions and their behavior can be described by linear rel&0Site geometry. In recent papéRefs.[29-31, 33-3§ we
tionships from continuum physics, such as those between tHi€veloped a variational approach to the problem. The ap-
fluxes and driving forces and strains and stresses. The COR_roac_h constructs trial polarization f|elds_S|m|Iar_t_0 those of
tacts between the components in a heterogeneous mediL}FhaS.hm and Shtr|I_<ma||j22], hOV\_/ever our m_equalltles keep
are assumed to be ideal. Overall properties of such composi%dd't'onal fluctuation terms, which help to tighten the bounds

: : . considerably.
systems have been of interest since the time of Maxjtg|l : . . L i
Rayleigh[2], and Einsteir{3]. Those authors obtained the Returning to the effective medium approximation meth

. ) . ; ) . ods, we are especially interested in the symmetric self-
asymptotic expressions of the effective dielectaad resis- consistent scheme of Bruggem@, Landauef8,14], Budi-

tivity).coefficie.nt, an.d the visc.osity for a di!ute suspgnsion Ofansky[lo], and Hill[11]. Those authors calculated the fields
spherical particles in a continuous matrix. The direct apin the heterogeneities by considering them separately and
proach to the problem is to define a particular m|crogeometr)équa||y as sphericabr more generally ellipsoidaparticles

and then proceed to solve the field equations in this geommpeded in a homogeneous medium with an unknown effec-
etry. However, such exact solutions are rarely available beﬁve property and then proceed to construct and solve the
cause the microgeometry of a composite is often of randomgelf-consistent equation determining the effective property.
nature and the inhomogeneities are not of idealistic sphericalandauer{8] and Budiansky[10] argue that the method is
form or presented in a dilute fraction. Hence, various effecteasonable for those mixtures made of the constituents com-
tive medium approximate schemes have been constructed bined in a certain symmetrical fashion, while the method
deal with the problem(see Refs.[4—17] and references predicts inaccurate results for certain asymmetric matrix
therein. The advantage of these schemes is that they giveomposites. It should be noted that a self-consistent effective
relatively simple evaluations of the effective properties ex-property is a reliazable one and corresponds to a definite
pressed in the properties and volume fractions of the condifferential geometric cell mode]7,37,3§ constructed as
stituents and they might explain the main effects of interacfollows: starting with some base matrix, at each step of the
tions between the constituents in appropriate situationgrocedure, we add into it infinitesimal amounts of well sepa-
However, the schemes cannot tell the degree of accuracy ohted new spherical particléer randomly oriented ellipsoi-
the obtained results and they sometimes violate the exackal ones with the same aspect ratid inclusion phases, with
relations imposed upon them, e.g., the expressions of theelative proportions corresponding to their volume fractions
effective properties should be attained by definite specifién the final composition. The inclusions added at each step
models. Perhaps, a more complete approach begun in theust be considerably greater in sizes than those that have
pioneer workg5,18], and followed in Refs[19-3§, is to  been added previously, and they will see an effective con-
derive upper and lower bounds on the effective propertiesinuum, owing to their relative sizes. The procedure is con-
from dual variational principles of the respective problems.tinued until the volume fraction of the original base matrix
The estimates should yield not only the approximate effechecomes infinitely small and eliminated. The polydispersed
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(a) (b) NO=2 Naka(X), Ka(x):(é' ;;\\//a. @

The infimum (1) is seen over the vector fiek(x) (elec-
trical, magnetic, thermal . .) satisfying restrictions

rot e=0 (i.e., e is a gradient fiely,

j e dx=e’=const. 3
v

The exact infimum poingé(x) of problems(1), (3) should
yield an exact solution fok.. However, such an exact so-

. . ) lution generally is not available because of the statistical na-
differential model constructed possesses an effective proyre of composite geometry. So our objective is to find the

erty exactly equal to that determined by the symmetric Selfbest possible trial fielé(x) to deduce the best possible up-

consistent scheme. Clearly the model is only a special me”ber bound or\, from Eg. (1), given the degree of uncer-
ber of the class of quasisymmetric cell composfifeks 33,36 tainty in the mi(c:rogeometry df/

formed from disordered spherical cefts randomly oriented Following the established procedure of RéR9, 34, we
ellipsoidal ones with the same aspect rptlmving sizes substitute a trial field(x) with the components T
ranging to infinitely small, to fill all the material space and
the properties assigned randomly with the proportions corre- n n Aot Ao
sponding to the volume fractions of the phases in the com- e=e’—2> 1—( > Ug —~—
position[consult Fig. 1a)]. These idealistic mixtures, in their a=1 p=1 " At Ao
turn, belong to a larger but realistic class of quasisymmetric
compositesg[21,30,32—3$ [referred to in thoge WO)I{kS as nto Eq. (1) to deduce the upper bound
symmetric cell, fully disordered or perfectly random Ae=<P,(Ag)+\ (5)
materials—see Fig.(b)]. Such composites generally do not A e
have distinct inclusion and matrix phases as well as distinciyhere
forms or sizes of the heterogeneities, the microgeometries of
their components are statistically indistinguishable, except v,
possible differences in the volume fractions. In the special Pxo\o):( 21 Y
case of equal volume fractions of the phases, we have a truly “ a0
symmetric composite: an interchange of the places be-
tween any two phases should not affect the overall properties Ao, =2
of the composite. Upper and lower estimates for the effective **
properties of those quasisymmetric composites will be the n
subject of our study. We also restrict our attention in this . By
paper to those that are globally and locally isotropic in two Xa,;;;:l [(Aa= XA Xs(No) X\ (No)],  (7)
dimensions, which correspond to the behavior of certain uni-
directional composites in the transverse plane and of the thin n v 1
films. Among the quasisymmetric multicomponent media, Xs(No)= > X :)\ BV
the circular cell composite, which is the simplest model rep- a=1 RaT R0 ApT RO
resenting practical equiaxial particulate mixtures, will be of
our primary interest. Ag«/:f ¢ﬁ<Pi7jdX. V20%(x) = Ko (X), )
Vv

a

FIG. 1. (a) Circular cell material{b) quasisymmetric material.
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n
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>
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I1l. BOUNDS ON THE CONDUCTIVITY 1
B(x)= B — — B .
Consider a representative elem&hof a multicomponent oy 0 =) Vg fvag”dx, XeVa; (10
medium, which consists af isotropic components occupy-
ing regionsV,CV of volumesv, (the volume ofV is as-  the latin indices after a comma denote differentiation with

sumed to be the unifyand having the conductivities,, respect to the corresponding Cartesian coordinates; conven-
elastic modulik, ,u, (e=1,...n). As the composite is tional summation on repeated latin subscripts is assumed.
statistically isotropic, its effective conductivity, can be de- The boundq5)—(10) contain geometric parametekﬁy,

fined as follows: which depend on the harmonic potential$ defined on the

regionsV, . If these geometric parameters can be evaluated
for specific composites then the parametgr which is ar-
)\ceo-e°=ian’ Ne-edx, (1)  bitrarily positive, should be chosen as small as possible to
v make\,, <0, so that the term, in Eg. (5) can be elimi-
nated to yield us the best possible upper bound ofor the
where composites considered. For example, takilg= A\
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=max\,...\n}, one can verify thak ., <0 independent of "

particular values oA?”, and from Eq.(5) one rederives the Ae=<P,(\"9), AY¢= 21 Valg- (17)
Hashin-Shtrikman upper bouri®2] valid for all isotropic “
composites Similarly one can construct the lower bound from the
Ae=<P,(Amay)- (12) problem dual to that of Eq$1) and(3)
For the class of quasisymmetric composit8s], the pa- -1,0 i0_j J 1
rametersAgy can be shown to depend only on two positive Ae -7 =inf v)\ J-aax, (18)

coefficientsf,f,(a# B+ v+ «)

ABY (f1—1,) where the flux vector fielf x) is subjected to the restrictions
a ~UValgU 117 12),

V.j=0 (equilibrium equatio

A=y (1—v )[(1—v ) f1+v,.f5], 2 ] (eq q n
1 :.0:

AP =00 (v~ D f1—va], (1)=J"=const. (19

To construct a lower bound ox, (i.e., an upper bound on
BB — _
Ao =vat L (17vg)fatvgfy]. A, 1) from Egs.(18) and(19), we take a trial field (x) with

From Egs.(5)—(7) and (12) one can deduce an upper the components

bound for quasisymmetric composites, which is valid for all .

; e = n n -1, y-1
possible positive coefficientss, , f L Ao g 0 a
? Ji:JiO_ZZl 1- 621 Vi 51 (J7e% =i Ka)
< u a= - B 0
)\C< P}\()\ )! (20)
n
NY=mint Aal Aoz N, QYNg)<O". and then deduce from E¢l8) the lower bound fon
{ 0| A0 0121 Ualg Q)\( O) ] ) )
) ) L Ao 1<Py )+ Nk (22)
Uy ) _ Vs _
Qx(\o) 21 ValNg )\o)(ﬁz NptNo Natho ) . A é o —2
Nex =205 1—A =
(13) *% 0 0a=l )\a+)\0
In the case of two-component materials, the bo(h8) n
reduces further to % ﬁz . [N, 1—Ng 1)Agyxﬁ()\0)xy()\o)]_
a,p,y=
)\CS P}\()\u), )\u:ma){l)l)\l‘l‘vz)\z,vl)\z‘l‘vz)\l}.
(14) (22
If the geometric coefficient$,,f, can be evaluated for Let Ao, which is arbitrarily positive, to take the valug
certain cell compositef21,33 then an even tighter bound =\ ;,=min{\, ... \,}, one can verify thah,, <O inde-
can be constructed pendent of particular values @?, then\,, in Eq. (21)
_ uf can be eliminated to strengthen the inequality leading to the
Ae=Py(A™), (19 Hashin-Shtrikman lower bound valid for all isotropic com-

. . . osites
where u'f is the solution of the equatior(to make P

N =0
* ) )\CB P)\O\min)- (23)

flz va(o-a_O-Uf)< 2

5 opgt ol o,t o'

Uﬁ 1

For our smaller class of quasisymmetric composites we
have, respectively, the tighter bound

+22 Vo, 0" Ne=Py(\),
v 2 n -1
Yy _ I_ = L)<
X% UB( ; P 0. (18 A max{ Mo xo<( ;1 va/)\a) ,Qx(x0)<o],
Of particular interest are circular cell materials, for them, n n v 1 2
as in Fhe respective case of three-dimensional spherical celb'x()\o): 2 U (1IN ,—1/\) 2 B =~
materialq 33], we havef;=0, so from Eqs(15) and(16) we a=1 B=1 NgtNg AgtNo

get a very simple estimate (29
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For two-component materials E(24) reduces to

B! = Yi b2
| YA A,
Ae=Py(N),
L . ) _ Ualp (A\1—\p)? -
N=min{(vi/Ni+tva/Ny) " (vi/Natva/hg) (25 2NN, 017\2+U2)\1+ZG(Ui_Ug)()\1_)\2)
(30)
For those quasisymmetric composites with given param- ) ) ) )
etersf, ,f, a tighter bound can be derived ' The geometrlc paramet& in Eq. (30) is restricted by'the
inequality 1/4<G=1/2, so for the whole class of quasisym-
Ae=P,(\') (26) metric materials we have
it . . - max BY=\.= min B). (31)
where)'" is the solution of the equatiofio makeX,, =0) 14<G<1/2 1/4<G<1/2
1 1 n Vg 1 2 The bounds31) are identical to those of Eq$14) and
flz U“(U__;W> 2—: ogton g ton (29).
a=1 a Op/\B=1 OpgT 0y a’ ¥0 The geometric parameté&s has the particular valu&
n 1 1 =1/4 for circular cell material, an@ = 1/2 for lamellar cell
+f22 Ua(__ —IT) material. It is related to the parameter f,/f, appearing in
a=1 Ta 0Op Egs.(16) and(27) by the equalityalso consult the respective
n n 2 three-dimensional case in R¢83])
xS (2 Oy Lo 27)
~, "Bl < If ey = 4G-1
pm1 Tly=1 0yT o0 OpT o0 f=filfo=5—pe (3=G=i, 0=f==). (32

For circular cell materials the bound reduces to o ) .
For an elliptical cell material the geometric paramétehas

the particular valu¢24]
G=3[A’+(1-A)%], (33

n

-1
Ae=Py (M), x'°=( 21 va)\al) . (28)
where A is the axial ratio of the elliptical cell with aspect
ratio a=(1—A)/A.
Refining a method developed by Bergmi@89], Milton

BU=)\ =B (29) [26] was able to derive the bounds for two-component cell

AT PN materials more restrictive than the boun@®) and (30),
u which coincide with the ones from Eqgl5) and (16) and
By=vih1F v\ Egs. (26) and (27) in the two-component cadéeeping in

v10s (A= \p)2 mind the relation(32), and supposing that,=\]

Beran and Silnutzef23] obtained the following bounds
for the quasisymmetric two-component cell materials:

2 UIN+ U+ 2G(v5—v2) (A= Ay’ U=\ =M, (34)

MU (M F+ XN+ 01N+ 0N ) —vo[v1+ (02— v1)(AG—1)](N1—\p)?
M2 (NN DA 0N TV ) [0 (V2= v1) (AG—1)](A =N )P

(35
| (A1) Ao+t v 1N+ 0oNo) — [V (01— V) (AG— 1) (A1~ \p)?
ML (N AN N TN+ oihg) —og[va (01— 0) (AG— 1) J(N = Ap) P

For the whole class of quasisymmetric two-componenitomponent materials, while our boundsd), (24), (17), and

materials one has (28) are valid for general multicomponent materials.
max MY=X\.= min M!. (36)
1a<G<1/2 1a<G<1/2 lIl. GEOMETRIC MODELS

A natural question is how well the constructed bounds
The boundgq36) are tighter than the bound81) or (14)  approximate the expected properties of particular composites
and (25). Numerical comparisons between the differentand reflect the observed scatter intervals, given the uncer-
bounds and the models will be illustrated in Sec. Ill. Notetainty in composite microgeometry, and can the bounds be
that the bounds(34) and (36) are restricted to two- significantly improved? So we constructed some cell models,
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FIG. 2. Conductivity of differential elliptical
cell media(A\,=10n{, v,=0—1).
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the effective conductivity of which could be determined ex-
actly and compared them with the bounds.

We construct the polydispersed differential cell model
following the procedure described at the end of Sedot
more details see Reff9, 37, 3§). Of particular use is the
asymptotic expression for the conductivikty- d\ of a dilute
suspensionw ,dt of well-separated elliptical inclusions with
the same axial ratidA from « components ¢=1, ... n)
having conductivities\, in a matrix having conductivitp

([38,40)

1+ E v, dt
a=1

d
(37

Equation(37) leads to the differential equation of the dif-
ferential scheme. In the limit with the original base matrix
eliminated it yields the equation determining the effective
conductivity A, which exactly coincides with the equation
of the effective medium self-consistent scheme

Nog—
2

A

N+dN=\

1 1
+
NAFNI—A) N (1—A)+AA

n

> VaNo—

a=

1
WEETSES W
(39)

M N AT A) T

For circular cell mediaA=1/2, Eq.(38) reduces to

é No— Ao
S VES Y

a=1

0. (39

In the case of the two-component circular cell media, Eq
(39) is resolved explicitly

Ne=3{(v1—v2)(A\1—\y)
+[(v1=v2) (A1 =N+ N, 1Y (40)

Now we construct a quasisymmetric laminar cell model:
form a macrocell by combining a great number of thin lami-

values\ , randomly with the frequencies according to the
volume fractionsy , of the componentsd=1, ... n). The
macrocell has the conductivitias=="_,v ,\, in the direc-
tion parallel to the laminae and, =(="_,v,/\,) ! in the
perpendicular direction. The next step is to form a macro-
scopically isotropic aggregate from this base anisotropic
macrocell. According to Ref41] the aggregate should have
the effective property
-1711/2
) ( va/)\a) .

If in Eq. (38) we letA=0 then we get the equation for the
differential polydispersed laminar cell model. One can verify
that this polydispersed laminar model possesses the same
effective conductivity as that of modétl) for the two-rank
laminar model constructed above.

For example, we consider quasisymmetric two-
component media witth,=10\4, v,=0—1. Graphics of
the effective conductivityr. for differential elliptical cell
models calculated from E@38) with A=1/2 (circular cel),
A=1/4, A=1/8, andA=0 (laminar cel) are given in Fig. 2.
Note that the conductivity is increased with when v,
>0.5, while the reversed order is observed wher 0.5.

In Fig. 3 the bound$14) and (25) [or equivalently Eq.
(31)] and (36) for quasisymmetric composites and the con-
ductivities of differential circular cel(40) and laminar cell
(41) models are compared. The bour{@6) are more restric-
tive and the models lie strictly inside the bounds as expected.

In Fig. 4 the bounds for quasisymmetric materials and
those for specific circular cell materials are presented to-
gether with the conductivity of the differential circular cell
model, which lies strictly inside the bounds, as expected. The
area surrounded by the bounds for circular cell materials
covers a large part of the one defined by the bounds for more
general quasisymmetric materials. The same can be said
about any bounds for elliptical cell materiglkeeping in
mind the relationg32) and (33)], and the bounds for multi-
component material€l5), (16), (26), and(27).

It is known that in the special casgq=v,=1/2 the qua-
sisymmetric composites have the exact conductivity inde-

n

> Uahg
1

a=

n

>

a=

A=A\ N )= { (
(41)

nae in parallel, the conductivities of which are assigned theendent of particular cell structurg42—44
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V.

2

Ae=(N1ho) Y2 (42) pi=maxvpmg+vopa, vt UoMe},

So it is natural that all the cell models in Fig. 2 go through /-LI:min{(Ull,M1+02/M2)_l, (vilpp+valuy) 1,

Eq.(42) atv;=v,=1/2. All the bounds, though keeping this (44)
point inside, do not converge to E@2) at v,=v,=1/2.
This indicates that the constructed bounds are not the best P (e, (KY 1)= =P (uy (K 1)), (45)

possible ones and can be improved. On the other hand, the
diversity of the models in Fig. 2, outside the point=v,
=1/2, indicates that Eq(42) is only an exceptional case,
where a property of the quasisymmetric composites can be | ) . .
determined exactly independent of its particular microgeom-  K'=mi{(v1/K;+v,/Kp) ™%, (v1 /Ko +v2/Ky) ™7,

K”=ma){le1+ Usz,U1K2+UzKl},

etry. Generally there always exists a scatter interval for an (46)
effective property due to the uncertainty in the geometry of a ) ]
quasisymmetric composite. where the property functionBy ,P, for the general multi-
component media have forms very similar to thatRyf in
formula (6)
IV. ESTIMATES FOR THE ELASTIC MODULI
Similarly one can construct the estimates for the elastic n Vg !
modulik., u. of quasisymmetric composites. The bounds for Pr(mo)= &4 Ko o ~ Mo> (47)
guasisymmetric two-component materials have the simple
forms n _1
v
P = _* — ,
Pe(1)=Ke=Pr(u), @3 W)=\ 2 ] e
10
g ]
8 1 bounds for quasi-
- symmetric materials
6 4
% 54 bound.s, circular cell
Mg materials FIG. 4. Conductivity of circular cell media
(7\2:10)\1, 1}2:0—>1)-
3 4
) ---0--- a circular cell model
1
0

0 01020304050607 08909 1
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Komo have maximal and minimal elastic moduli. Form a macrocell

m- (48) by combining a great number of thin laminae bonded to-
0 0 gether in parallel, the elastic moduli of which are assigned

In the general multicomponent case the bounds for circulathe valuesk,,u, randomly with the frequencies according

My (Ko, o) =

cell materials are particularly simple to the volume fractions , of the componentsg=1,...,n).
The elastic coefficients;;, of this anisotropic macrocell can
Pr(u9)=K =Py (u'®), (49 be calculated following Ref45]
n n -1 n -1
uc_ lc_ / 50 _ Ua
w (Z,l Valbar M Zl Valto| (50 cnn—(gzl K]
P;;,(/-L*(Kucaﬂuc))zlu“caPM(N*(KICvﬂIC))a (5D n
va(Ka_lu‘a)

n n -1 C110~= Zl W Ci111,

Kue=> oy K., K'°=( > v, K, (52) o (54)
a=1 a=1
. . . Ua[4KaMa+(Ka_Ma)0112i|
Now we construct some circular and laminar cell models, Copoo— 21 K.+ ,

the elastic moduli of which can be determined exactly. Ap-
plication of the differential scheme leads to the system of
equations determining the elastic modgili, u. for the poly- Vg
dispersed differential circular cell model, which coincide C1212= gl M_
with the respective equations of the symmetric self- “
consistent approximation

n -1

Now with this base macrocell, following Reff27, 32,

n _ one can construct isotropic aggregates having maximal and
(K=K (Ket pe) . ; ; ; ;

> v, =0 minimal elastic moduli. In particular, the extremal laminar

a=1 Kat e cell configurations constructed should have, respectively, the

effective elastic moduli

n
S, (o= me) (et py) 0 Kere
=Vv, Me=7," T 5 - _1 1/2 .
=1 Mot Mty ¥ Ket2u, Ke=3[(C1111C2220 "+ C1122l; (55
(53
2
) C111Cooo— C
Next we construct some laminar cell models. We are es- s Um (56)
pecially interested in the extremal configurations—those that C1111+ C2225~ 2C1127
2
C1111C2225~ C1122 ) (57)
Mc= 2 —1 12!
2C1120~ 2C 000+ 2{C2p2d C1111 C2220— 2C11251 (C1111C2025~ C1120) C112l}
2
C1111C2220~ C1122 (58)
Mc= 2 -1 1/2°
2C1122~ 2C11111+ 2{C1111 C1111F C2220— 2C1125F (C1111C2220~ C1129) C1o10l}

For illustration we consider quasisymmetric two- Numerical comparisons show that the lower bound on
component media with<;=10K,, w;=5K;, u,=0.4K,,  u. (45 and(46) is nearly reached by the lower bound enve-
and v,=0—1. Comparisons between the bounds and th@ope of models(53) and (54), (57) [or (58)]. Generally the
models for the elastic two-dimensional bulk and sheargreas extended by the circular and laminar cell models, any
moduli are given in Figs. 5and 6. point inside which should be attained by a specific compos-

Numerical and analytical comparisons reveal that thqte cover most of the areas bounded by the estimates for the
lower bound on the bulk modulug3), (44) and the modulus  g|astic bulk and shear moduli of quasisymmetric composites
of the laminar cell moc_ie(54),_(56) coincide over half the (43—(46). Hence, the constructed bounds might be near to
ranges of parameters, in particular, when the best possible ones determined by the uncertainty in ge-
(59) ometry of quasisymmetric composites.

We can see that the bounds for the subclass of circular
hence the lower bound on the bulk modulus of quasisymmeteell materials cover large parts of the areas defined by the
ric two-component materials is optimal over those ranges obounds for more general quasisymmetric composites. This
parameters. indicates that the very simple estimates for circular cell ma-

vilpotva/wa=v il pgtoolu,,
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o
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k 5 . .
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%

terials (47)—(52) can be recommended for evaluation of the  Upper and lower bounds on the overall elastic and con-
properties of quasisymmetric media generally. The estimateductivity properties of quasisymmetric media expressed in
should be best for practical equiaxial particulate compositeghe properties and volume fractions of their components have
which are better described by the circular cell model. Thebeen given and shown to be nearly reached by envelopes of
estimateg47)—(52) are explicit and are much simpler than the properties of various exact cell models, hence the con-
the implicit solution of the equations of the symmetric self- structed bounds are reasonable. The lower bound on the bulk
consistent schem3). modulus of quasisymmetric two-component composiés,
(44) is exactly attained by the laminar cell modéH), (56)
over half the ranges of parametd&9).
V. CONCLUSION _ The estimates f(_)r general quasisymmetric media do not
differ much (especially around the point of equal volume
Most practical heterogeneous media have complicated miractions of phasesfrom those for the subclass of circular
crogeometries, hence various effective medium approximaeell composites. Hence, the very simple estimates for the
tion schemes have been constructed to evaluate the effectieenductivity (17), (28) and elastic moduli47)—(52) of mul-
properties of the media. Perhaps a most well-known schemiécomponent circular cell composites can be recommended
is the self-consistent one, which has been shown to be relfor evaluation of the properties of the more general quasi-
azable by the definite though idealistic polydispersed differsymmetric composites—especially of the practical particu-
ential model. The scheme is expected to approximate thiate ones. They are not only very much simpler than the
behavior of quasisymmetric composites. However, since thamplicit solutions of Eqs(39) and(53) of the effective me-
microgeometry of most practical quasisymmetric compositeglium self-consistent approximation, but also yield certain in-
is of random nature, there always exist certain scatter intefformation about the degree of scatter in the observed effec-
vals in the observed effective properties of the media. Hencdijve properties associated with the uncertainty in
the more complete approach to the problem is to predict thenicrogeometry of the composites. Observations made here
possible maximal and minimal values of the effective prop-also apply to three-dimensional media. More specifically, the
erties of the media due to the uncertainty in their microge-estimates of the typgd7), (28), and(47)—(52) are also valid
ometry. for multicomponent spherical cell materials, which represent

5
45 ——2-abounds, quasi-symmetric

) media

4
3.51 )

/- bounds for circular cell

3 L/ media

25 ). . .
_k”__ < FIG. 6. Shear modulus of quasisymmetric me-
2 "L ---0- -~ a circular cell model dia (Ky=10K,, u;=5K,, wu,=0.4K,, v,
15 "8 =0—1).
7N ---A--- laminar cell models

1
0.5,

0

6 01 02 03 04 05 06 07 08 09 1
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three-dimensional particulate composites, and the onlynal over half the ranges of parametgunder restrictions

change is in the particular forms of thefunctions(consult
Refs.[31, 33). The respective estimates for the quasisym-lower bounds on the bulk modulus, and the upper bound on

similar to that of Eq.(59)] in three cases: the upper and

metric three-dimensional two-component materials are optithe conductivity.
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