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Overall properties of planar quasisymmetric randomly inhomogeneous media:
Estimates and cell models

Pham Duc Chinh
National Center for Natural Science and Technology, Vien Co hoc, 224 Doi Can, Hanoi, Vietnam

~Received 8 January 1997!

We study the class of planar isotropic randomly inhomogeneous media with certain statistical symmetry
among the component geometries. Exact upper and lower estimates of the conductivity and elastic properties
for the whole class of multicomponent media are given explicitly in the properties and volume fractions of the
constituents and are compared with some idealistic but exact cell models. The comparisons reveal that the
estimates are attained, or nearly reached, by envelopes of exact properties of the models, hence the estimates
should give reasonable approximations for the overall properties of the quasisymmetric mixtures, as well as the
expected scatter intervals associated with the uncertainty in the geometry of the media. Special attention is
given to very simple estimates for the properties of multicomponent circular cell media, which are expected to
represent practical particulate composites.@S1063-651X~97!00807-6#

PACS number~s!: 82.70.2y
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I. INTRODUCTION

Many heterogeneous materials appear statistically ho
geneous and isotropic and have overall~effective! properties
depending upon the properties and volume fractions of
constituents and their geometry. The microscopic sizes of
constituents are often large in comparison with the atom
mensions and their behavior can be described by linear r
tionships from continuum physics, such as those between
fluxes and driving forces and strains and stresses. The
tacts between the components in a heterogeneous me
are assumed to be ideal. Overall properties of such compo
systems have been of interest since the time of Maxwell@1#,
Rayleigh @2#, and Einstein@3#. Those authors obtained th
asymptotic expressions of the effective dielectric~and resis-
tivity ! coefficient, and the viscosity for a dilute suspension
spherical particles in a continuous matrix. The direct a
proach to the problem is to define a particular microgeome
and then proceed to solve the field equations in this ge
etry. However, such exact solutions are rarely available
cause the microgeometry of a composite is often of rand
nature and the inhomogeneities are not of idealistic sphe
form or presented in a dilute fraction. Hence, various eff
tive medium approximate schemes have been constructe
deal with the problem~see Refs.@4–17# and references
therein!. The advantage of these schemes is that they g
relatively simple evaluations of the effective properties e
pressed in the properties and volume fractions of the c
stituents and they might explain the main effects of inter
tions between the constituents in appropriate situatio
However, the schemes cannot tell the degree of accurac
the obtained results and they sometimes violate the e
relations imposed upon them, e.g., the expressions of
effective properties should be attained by definite spec
models. Perhaps, a more complete approach begun in
pioneer works@5,18#, and followed in Refs.@19–36#, is to
derive upper and lower bounds on the effective proper
from dual variational principles of the respective problem
The estimates should yield not only the approximate eff
561063-651X/97/56~1!/652~9!/$10.00
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tive properties of a composite, but also the possible sca
intervals associated with the uncertainty in the compo
geometry. The difficult point, however, is to extract usab
information about restrictions on the geometry of a giv
composite and then derive the best possible estimates o
effective properties—the ones that can be attained by spe
geometries permitted by the given uncertainty in the co
posite geometry. In recent papers~Refs.@29–31, 33–35#! we
developed a variational approach to the problem. The
proach constructs trial polarization fields similar to those
Hashin and Shtrikman@22#, however our inequalities kee
additional fluctuation terms, which help to tighten the boun
considerably.

Returning to the effective medium approximation me
ods, we are especially interested in the symmetric s
consistent scheme of Bruggeman@7#, Landauer@8,14#, Budi-
ansky@10#, and Hill @11#. Those authors calculated the field
in the heterogeneities by considering them separately
equally as spherical~or more generally ellipsoidal! particles
imbeded in a homogeneous medium with an unknown eff
tive property and then proceed to construct and solve
self-consistent equation determining the effective prope
Landauer@8# and Budiansky@10# argue that the method i
reasonable for those mixtures made of the constituents c
bined in a certain symmetrical fashion, while the meth
predicts inaccurate results for certain asymmetric ma
composites. It should be noted that a self-consistent effec
property is a reliazable one and corresponds to a defi
differential geometric cell model@7,37,38# constructed as
follows: starting with some base matrix, at each step of
procedure, we add into it infinitesimal amounts of well sep
rated new spherical particles~or randomly oriented ellipsoi-
dal ones with the same aspect ratio! of inclusion phases, with
relative proportions corresponding to their volume fractio
in the final composition. The inclusions added at each s
must be considerably greater in sizes than those that h
been added previously, and they will see an effective c
tinuum, owing to their relative sizes. The procedure is co
tinued until the volume fraction of the original base matr
becomes infinitely small and eliminated. The polydispers
652 © 1997 The American Physical Society
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56 653OVERALL PROPERTIES OF PLANAR QUASISYMMETRIC . . .
differential model constructed possesses an effective p
erty exactly equal to that determined by the symmetric s
consistent scheme. Clearly the model is only a special m
ber of the class of quasisymmetric cell composites@21,33,36#
formed from disordered spherical cells~or randomly oriented
ellipsoidal ones with the same aspect ratio! having sizes
ranging to infinitely small, to fill all the material space an
the properties assigned randomly with the proportions co
sponding to the volume fractions of the phases in the co
position@consult Fig. 1~a!#. These idealistic mixtures, in thei
turn, belong to a larger but realistic class of quasisymme
composites@21,30,34–36# @referred to in those works a
symmetric cell, fully disordered or perfectly random
materials—see Fig. 1~b!#. Such composites generally do no
have distinct inclusion and matrix phases as well as dist
forms or sizes of the heterogeneities, the microgeometrie
their components are statistically indistinguishable, exc
possible differences in the volume fractions. In the spec
case of equal volume fractions of the phases, we have a t
symmetric composite: an interchange of the places
tween any two phases should not affect the overall proper
of the composite. Upper and lower estimates for the effec
properties of those quasisymmetric composites will be
subject of our study. We also restrict our attention in th
paper to those that are globally and locally isotropic in tw
dimensions, which correspond to the behavior of certain u
directional composites in the transverse plane and of the
films. Among the quasisymmetric multicomponent med
the circular cell composite, which is the simplest model re
resenting practical equiaxial particulate mixtures, will be
our primary interest.

II. BOUNDS ON THE CONDUCTIVITY

Consider a representative elementV of a multicomponent
medium, which consists ofn isotropic components occupy
ing regionsVa,V of volumesva ~the volume ofV is as-
sumed to be the unity! and having the conductivitiesla ,
elastic modulika ,ma (a51, . . . ,n). As the composite is
statistically isotropic, its effective conductivitylc can be de-
fined as follows:

lce
0
•e05 infE

V
le•e dx, ~1!

where

FIG. 1. ~a! Circular cell material;~b! quasisymmetric material.
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l~x!5(
a

laka~x!, ka~x!5 H1,0, xPVa

x¹Va .
~2!

The infimum~1! is seen over the vector fielde(x) ~elec-
trical, magnetic, thermal, . . . ! satisfying restrictions

rot e50 ~ i.e., e is a gradient field!,

E
V
e dx5e05const. ~3!

The exact infimum pointe(x) of problems~1!, ~3! should
yield an exact solution forlc . However, such an exact so
lution generally is not available because of the statistical
ture of composite geometry. So our objective is to find t
best possible trial fielde(x) to deduce the best possible u
per bound onlc from Eq. ~1!, given the degree of uncer
tainty in the microgeometry ofV.

Following the established procedure of Refs.@29, 34#, we
substitute a trial fielde(x) with the components

ei5ei
022(

a51

n F12S (
b51

n

vb

la1l0

lb1l0
D 21Gej0w ,i j

a , ~4!

into Eq. ~1! to deduce the upper bound

lc<Pl~l0!1l** , ~5!

where

Pl~l0!5S (
a51

n
va

la1l0
D 21

2l0 , ~6!

l** 52S (
a51

n
va

la1l0
D 22

3 (
a,b,g51

n

@~la2l0!Aa
bgXb~l0!Xg~l0)#, ~7!

Xb~l0!5 (
a51

n
va

la1l0
2

1

lb1l0
, ~8!

Aa
bg5E

Va

w i j
b w i j

gdx, ¹2wa~x!5ka~x!, ~9!

w i j
b~x!5w ,i j

b 2
1

va
E
Va

w ,i j
b dx, xPVa ; ~10!

the latin indices after a comma denote differentiation w
respect to the corresponding Cartesian coordinates; con
tional summation on repeated latin subscripts is assume

The bounds~5!–~10! contain geometric parametersAa
bg ,

which depend on the harmonic potentialswa defined on the
regionsVa . If these geometric parameters can be evalua
for specific composites then the parameterl0 , which is ar-
bitrarily positive, should be chosen as small as possible
makel** <0, so that the terml** in Eq. ~5! can be elimi-
nated to yield us the best possible upper bound onlc for the
composites considered. For example, takingl05lmax
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654 56PHAM DUC CHINH
5max$l1,...,ln%, one can verify thatl** <0 independent of
particular values ofAa

bg , and from Eq.~5! one rederives the
Hashin-Shtrikman upper bound@22# valid for all isotropic
composites

lc<Pl~lmax!. ~11!

For the class of quasisymmetric composites@31#, the pa-
rametersAa

bg can be shown to depend only on two positi
coefficientsf 1 , f 2(aÞbÞgÞa)

Aa
bg5vavbvg~ f 12 f 2!,

Aa
aa5va~12va!@~12va! f 11va f 2#,

~12!

Aa
ab5vavb@~va21! f 12va f 2#,

Aa
bb5vavb@~12vb! f 21vb f 1#.

From Eqs.~5!–~7! and ~12! one can deduce an uppe
bound for quasisymmetric composites, which is valid for
possible positive coefficientsf 1 , f 2

lc<Pl~lu!,

lu5minH l0Ul0> (
a51

n

vala ,Ql
u~l0!<0J ,

Ql
u~l0!5 (

a51

n

va~la2l0!S (
b51

n
vb

lb1l0
2

1

la1l0
D 2.

~13!

In the case of two-component materials, the bound~13!
reduces further to

lc<Pl~lu!, lu5max$v1l11v2l2 ,v1l21v2l1%.
~14!

If the geometric coefficientsf 1 , f 2 can be evaluated fo
certain cell composites@21,33# then an even tighter boun
can be constructed

lc<Pl~lu f!, ~15!

where uuf is the solution of the equation~to make
l** 50!

f 1(
a

va~sa2su f!S (
b

vb

sb1su f2
1

sa1su fD 2

1 f 2(
a

va~sa2su f!

3(
b

vbS (
g

vg

sg1su f2
1

sb1su fD 250. ~16!

Of particular interest are circular cell materials, for the
as in the respective case of three-dimensional spherical
materials@33#, we havef 150, so from Eqs.~15! and~16! we
get a very simple estimate
l

,
ell

lc<Pl~luc!, luc5 (
a51

n

vala . ~17!

Similarly one can construct the lower bound from t
problem dual to that of Eqs.~1! and ~3!

lc
21j0• j05 infE

V
l21j• j dx, ~18!

where the flux vector fieldj (x) is subjected to the restriction

“• j50 ~equilibrium equation!,

^ j &5 j05const. ~19!

To construct a lower bound onlc ~i.e., an upper bound on
lc

21! from Eqs.~18! and~19!, we take a trial fieldj (x) with
the components

j i5 j i
022(

a51

n F12S (
b51

n

vb

la
211l̂0

21

lb
211l̂0

21D 21G ~ j j
0w ,i j

a 2 j i
0ka!

~20!

and then deduce from Eq.~18! the lower bound forlc

lc
21<Pl

21~ l̂0!1l̂** , ~21!

l̂** 52l̂0
2S 12l̂0(

a51

n
va

la1l̂0
D 22

3 (
a,b,g51

n

@~la
212l̂0

21!Aa
bgXb~ l̂0!Xg~ l̂0!#.

~22!

Let l̂0 , which is arbitrarily positive, to take the valuel̂0
5lmin5min$l1, . . . ,ln%, one can verify thatl̂** <0 inde-
pendent of particular values ofAa

bg , then l̂** in Eq. ~21!
can be eliminated to strengthen the inequality leading to
Hashin-Shtrikman lower bound valid for all isotropic com
posites

lc>Pl~lmin!. ~23!

For our smaller class of quasisymmetric composites
have, respectively, the tighter bound

lc>Pl~l l !,

l l5maxH l̂0Ul̂0<S (
a51

n

va /laD 21

,Ql
l ~ l̂0!<0J ,

Ql
l ~ l̂0!5 (

a51

n

va~1/la21/l̂0!S (
b51

n
vb

lb1l̂0
2

1

la1l̂0
D 2.
~24!
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For two-component materials Eq.~24! reduces to

lc>Pl~l l !,

l l5min$~v1 /l11v2 /l2!
21,~v1 /l21v2 /l1!

21%.
~25!

For those quasisymmetric composites with given para
etersf 1 , f 2 a tighter bound can be derived

lc>Pl~l l f !, ~26!

wherel l f is the solution of the equation~to makel̂** 50!

f 1(
a51

n

vaS 1

sa
2

1

s0
l f D S (

b51

n
vb

sb1s0
l f2

1

sa1s0
l f D 2

1 f 2(
a51

n

vaS 1

sa
2

1

s0
l f D

3 (
b51

n

vbS (
g51

n
vg

sg1s0
l f2

1

sb1s0
l f D 250. ~27!

For circular cell materials the bound reduces to

lc>Pl~l lc!, l lc5S (
a51

n

vala
21D 21

. ~28!

Beran and Silnutzer@23# obtained the following bounds
for the quasisymmetric two-component cell materials:

Bl
u>lc>Bl

l , ~29!

Bl
u5v1l11v2l2

2
v1v2
2

~l12l2!
2

v1l11v2l212G~v2
22v1

2!~l12l2!
,

en

n
te
-

Bl
l 5F v1l1

1
v2
l2

2
v1v2
2l1l2

~l12l2!
2

v1l21v2l112G~v1
22v2

2!~l12l2!
G21

.

~30!

The geometric parameterG in Eq. ~30! is restricted by the
inequality 1/4<G<1/2, so for the whole class of quasisym
metric materials we have

max
1/4<G<1/2

Bl
u>lc> min

1/4<G<1/2
Bl
l . ~31!

The bounds~31! are identical to those of Eqs.~14! and
~25!.

The geometric parameterG has the particular valueG
51/4 for circular cell material, andG51/2 for lamellar cell
material. It is related to the parameterf5 f 1 / f 2 appearing in
Eqs.~16! and~27! by the equality~also consult the respectiv
three-dimensional case in Ref.@33#!

f5 f 1 / f 25
4G21

224G
~ 1
4<G< 1

2 , 0< f<`!. ~32!

For an elliptical cell material the geometric parameterG has
the particular value@24#

G5 1
2 @A21~12A!2#, ~33!

whereA is the axial ratio of the elliptical cell with aspec
ratio a5(12A)/A.

Refining a method developed by Bergman@39#, Milton
@26# was able to derive the bounds for two-component c
materials more restrictive than the bounds~29! and ~30!,
which coincide with the ones from Eqs.~15! and ~16! and
Eqs. ~26! and ~27! in the two-component case@keeping in
mind the relation~32!, and supposing thatl2>l1#

Ml
u>lc>Ml

l , ~34!
Ml
u5l2

~l11l2!~l11v1l11v2l2!2v2@v11~v22v1!~4G21!#~l12l2!
2

~l11l2!~l21v2l11v1l2!2v2@v11~v22v1!~4G21!#~l12l2!
2 ,

~35!

Ml
l 5l1

~l11l2!~l21v1l11v2l2!2v1@v21~v12v2!~4G21!#~l12l2!
2

~l11l2!~l11v2l11v1l2!2v1@v21~v12v2!~4G21!#~l12l2!
2 .
ds
ites
cer-
be
els,
For the whole class of quasisymmetric two-compon
materials one has

max
1/4<G<1/2

Ml
u>lc> min

1/4<G<1/2
Ml

l . ~36!

The bounds~36! are tighter than the bounds~31! or ~14!
and ~25!. Numerical comparisons between the differe
bounds and the models will be illustrated in Sec. III. No
that the bounds~34! and ~36! are restricted to two-
t

t

component materials, while our bounds~13!, ~24!, ~17!, and
~28! are valid for general multicomponent materials.

III. GEOMETRIC MODELS

A natural question is how well the constructed boun
approximate the expected properties of particular compos
and reflect the observed scatter intervals, given the un
tainty in composite microgeometry, and can the bounds
significantly improved? So we constructed some cell mod
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FIG. 2. Conductivity of differential elliptical
cell media~l2510l1 , v250→1!.
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the effective conductivity of which could be determined e
actly and compared them with the bounds.

We construct the polydispersed differential cell mod
following the procedure described at the end of Sec. I~for
more details see Refs.@9, 37, 38#!. Of particular use is the
asymptotic expression for the conductivityl1dl of a dilute
suspensionvadt of well-separated elliptical inclusions wit
the same axial ratioA from a components (a51, . . . ,n)
having conductivitiesla in a matrix having conductivityl
~@38,40#!

l1dl5lF11 (
a51

n

vadt
la2l

2

3S 1

laA1l~12A!
1

1

la~12A!1lAD G .
~37!

Equation~37! leads to the differential equation of the di
ferential scheme. In the limit with the original base mat
eliminated it yields the equation determining the effect
conductivitylc , which exactly coincides with the equatio
of the effective medium self-consistent scheme

(
a51

n

va~la2lc!S 1

laA1lc~12A!
1

1

la~12A!1lcA
D50.

~38!

For circular cell mediaA51/2, Eq.~38! reduces to

(
a51

n

va

la2lc

la1lc
50. ~39!

In the case of the two-component circular cell media, E
~39! is resolved explicitly

lc5
1
2 $~v12v2!~l12l2!

1@~v12v2!
2~l12l2!

214l1l2#
1/2%. ~40!

Now we construct a quasisymmetric laminar cell mod
form a macrocell by combining a great number of thin lam
nae in parallel, the conductivities of which are assigned
-

l

.

:
-
e

valuesla randomly with the frequencies according to th
volume fractionsva of the components (a51, . . . ,n). The
macrocell has the conductivitiesl i5(a51

n vala in the direc-
tion parallel to the laminae andl'5((a51

n va /la)
21 in the

perpendicular direction. The next step is to form a mac
scopically isotropic aggregate from this base anisotro
macrocell. According to Ref.@41# the aggregate should hav
the effective property

lc5~l il'!1/25F S (
a51

n

valaD S (
a51

n

va /laD 21G1/2.
~41!

If in Eq. ~38! we letA50 then we get the equation for th
differential polydispersed laminar cell model. One can ver
that this polydispersed laminar model possesses the s
effective conductivity as that of model~41! for the two-rank
laminar model constructed above.

For example, we consider quasisymmetric tw
component media withl2510l1 , v250→1. Graphics of
the effective conductivitylc for differential elliptical cell
models calculated from Eq.~38! with A51/2 ~circular cell!,
A51/4, A51/8, andA50 ~laminar cell! are given in Fig. 2.
Note that the conductivity is increased withA when v2
.0.5, while the reversed order is observed whenv2,0.5.

In Fig. 3 the bounds~14! and ~25! @or equivalently Eq.
~31!# and ~36! for quasisymmetric composites and the co
ductivities of differential circular cell~40! and laminar cell
~41! models are compared. The bounds~36! are more restric-
tive and the models lie strictly inside the bounds as expec

In Fig. 4 the bounds for quasisymmetric materials a
those for specific circular cell materials are presented
gether with the conductivity of the differential circular ce
model, which lies strictly inside the bounds, as expected. T
area surrounded by the bounds for circular cell mater
covers a large part of the one defined by the bounds for m
general quasisymmetric materials. The same can be
about any bounds for elliptical cell materials@keeping in
mind the relations~32! and ~33!#, and the bounds for multi-
component materials~15!, ~16!, ~26!, and~27!.

It is known that in the special casev15v251/2 the qua-
sisymmetric composites have the exact conductivity in
pendent of particular cell structures@42–44#
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FIG. 3. Conductivity of quasisymmetric me
dia ~l2510l1 , v250→1!.
gh
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be
, t

,
b
m
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f

st
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p

lc5~l1l2!
1/2. ~42!

So it is natural that all the cell models in Fig. 2 go throu
Eq. ~42! at v15v251/2. All the bounds, though keeping th
point inside, do not converge to Eq.~42! at v15v251/2.
This indicates that the constructed bounds are not the
possible ones and can be improved. On the other hand
diversity of the models in Fig. 2, outside the pointv15v2
51/2, indicates that Eq.~42! is only an exceptional case
where a property of the quasisymmetric composites can
determined exactly independent of its particular microgeo
etry. Generally there always exists a scatter interval for
effective property due to the uncertainty in the geometry o
quasisymmetric composite.

IV. ESTIMATES FOR THE ELASTIC MODULI

Similarly one can construct the estimates for the ela
modulikc ,mc of quasisymmetric composites. The bounds
quasisymmetric two-component materials have the sim
forms

PK~mu!>Kc>PK~m l !, ~43!
st
he

e
-
n
a

ic
r
le

mu5max$v1m11v2m2 ,v1m21v2m1%,

m l5min$~v1 /m11v2 /m2!
21, ~v1 /m21v2 /m1!

21%,
~44!

Pm„m* ~Ku,mu!…>mc>Pm„m* ~Kl ,m l !…, ~45!

Ku5max$v1K11v2K2 ,v1K21v2K1%,

Kl5min$~v1 /K11v2 /K2!
21,~v1 /K21v2 /K1!

21%,
~46!

where the property functionsPK ,Pm for the general multi-
component media have forms very similar to that ofPl in
formula ~6!

PK~m0!5S (
a51

n
va

Ka1m0
D 21

2m0 , ~47!

Pm~m* !5S (
a51

n
va

ma1m*
D 21

2m* ,
FIG. 4. Conductivity of circular cell media
~l2510l1 , v250→1!.
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m* ~K0 ,m0!5
K0m0

K012m0
. ~48!

In the general multicomponent case the bounds for circ
cell materials are particularly simple

PK~muc!>Kc>PK~m lc!, ~49!

muc5 (
a51

n

vama , m lc5S (
a51

n

va /maD 21

, ~50!

Pm„m* ~Kuc,muc!…>mc>Pm„m* ~Klc,m lc!…, ~51!

Kuc5 (
a51

n

vaKa , Klc5S (
a51

n

va /KaD 21

. ~52!

Now we construct some circular and laminar cell mode
the elastic moduli of which can be determined exactly. A
plication of the differential scheme leads to the system
equations determining the elastic moduliKc ,mc for the poly-
dispersed differential circular cell model, which coincid
with the respective equations of the symmetric se
consistent approximation

(
a51

n

va

~Ka2Kc!~Kc1mc!

Ka1mc
50

(
a51

n

va

~ma2mc!~mc1m* !

ma1m*
50, m*5

Kcmc

Kc12mc
.

~53!

Next we construct some laminar cell models. We are
pecially interested in the extremal configurations—those
o-

th
ea

th

e
o

r

,
-
f

-

s-
at

have maximal and minimal elastic moduli. Form a macroc
by combining a great number of thin laminae bonded
gether in parallel, the elastic moduli of which are assign
the valuesKa ,ma randomly with the frequencies accordin
to the volume fractionsva of the components (a51,...,n).
The elastic coefficientsci jkl of this anisotropic macrocell can
be calculated following Ref.@45#
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Now with this base macrocell, following Refs.@27, 32#,
one can construct isotropic aggregates having maximal
minimal elastic moduli. In particular, the extremal lamin
cell configurations constructed should have, respectively,
effective elastic moduli
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For illustration we consider quasisymmetric tw
component media withK1510K2 , m155K2 , m250.4K2 ,
and v150→1. Comparisons between the bounds and
models for the elastic two-dimensional bulk and sh
moduli are given in Figs. 5 and 6.

Numerical and analytical comparisons reveal that
lower bound on the bulk modulus~43!, ~44! and the modulus
of the laminar cell model~54!, ~56! coincide over half the
ranges of parameters, in particular, when

v1 /m21v2 /m1>v1 /m11v2 /m2 , ~59!

hence the lower bound on the bulk modulus of quasisymm
ric two-component materials is optimal over those ranges
parameters.
e
r

e

t-
f

Numerical comparisons show that the lower bound
mc ~45! and~46! is nearly reached by the lower bound env
lope of models~53! and ~54!, ~57! @or ~58!#. Generally the
areas extended by the circular and laminar cell models,
point inside which should be attained by a specific comp
ite, cover most of the areas bounded by the estimates for
elastic bulk and shear moduli of quasisymmetric compos
~43!–~46!. Hence, the constructed bounds might be nea
the best possible ones determined by the uncertainty in
ometry of quasisymmetric composites.

We can see that the bounds for the subclass of circ
cell materials cover large parts of the areas defined by
bounds for more general quasisymmetric composites. T
indicates that the very simple estimates for circular cell m
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FIG. 5. Bulk modulus of quasisymmetric me
dia ~K1510K2 , m155K2 , m250.4K2 , v1
50→1!.
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ent
terials ~47!–~52! can be recommended for evaluation of t
properties of quasisymmetric media generally. The estim
should be best for practical equiaxial particulate composi
which are better described by the circular cell model. T
estimates~47!–~52! are explicit and are much simpler tha
the implicit solution of the equations of the symmetric se
consistent scheme~53!.

V. CONCLUSION

Most practical heterogeneous media have complicated
crogeometries, hence various effective medium approxi
tion schemes have been constructed to evaluate the effe
properties of the media. Perhaps a most well-known sch
is the self-consistent one, which has been shown to be
azable by the definite though idealistic polydispersed diff
ential model. The scheme is expected to approximate
behavior of quasisymmetric composites. However, since
microgeometry of most practical quasisymmetric compos
is of random nature, there always exist certain scatter in
vals in the observed effective properties of the media. Hen
the more complete approach to the problem is to predict
possible maximal and minimal values of the effective pro
erties of the media due to the uncertainty in their micro
ometry.
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Upper and lower bounds on the overall elastic and c
ductivity properties of quasisymmetric media expressed
the properties and volume fractions of their components h
been given and shown to be nearly reached by envelope
the properties of various exact cell models, hence the c
structed bounds are reasonable. The lower bound on the
modulus of quasisymmetric two-component composites~43!,
~44! is exactly attained by the laminar cell model~54!, ~56!
over half the ranges of parameters~59!.

The estimates for general quasisymmetric media do
differ much ~especially around the point of equal volum
fractions of phases! from those for the subclass of circula
cell composites. Hence, the very simple estimates for
conductivity~17!, ~28! and elastic moduli~47!–~52! of mul-
ticomponent circular cell composites can be recommen
for evaluation of the properties of the more general qua
symmetric composites—especially of the practical parti
late ones. They are not only very much simpler than
implicit solutions of Eqs.~39! and ~53! of the effective me-
dium self-consistent approximation, but also yield certain
formation about the degree of scatter in the observed ef
tive properties associated with the uncertainty
microgeometry of the composites. Observations made h
also apply to three-dimensional media. More specifically,
estimates of the types~17!, ~28!, and~47!–~52! are also valid
for multicomponent spherical cell materials, which repres
e-
FIG. 6. Shear modulus of quasisymmetric m
dia ~K1510K2 , m155K2 , m250.4K2 , v1
50→1!.
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three-dimensional particulate composites, and the o
change is in the particular forms of theP functions~consult
Refs. @31, 33#!. The respective estimates for the quasisy
metric three-dimensional two-component materials are o
ys

f
-

I-
.

ly

-
i-

mal over half the ranges of parameters@under restrictions
similar to that of Eq.~59!# in three cases: the upper an
lower bounds on the bulk modulus, and the upper bound
the conductivity.
-
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